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A nonstationary plane-parallel filtration of liquid in an inhomogeneous zonal seam of finite extent has been
investigated. A closed elastic liquid flow was considered. It has been established that the rate of this flow de-
pends on its direction.

In [1, 2], a nonstationary filtration of a plane-radial liquid flow in an inhomogeneous zonal porous medium
has been investigated. However, in these works, seams of infinitely large extent were considered or the problem was
solved by approximate methods.

In the present work, a seam of finite extent was considered and the problem was solved by analytical meth-
ods. We investigated the influence of a jump-like change in the permeability of a porous seam of finite extent, arising
as a result of a change in the direction of a liquid flow in it [3], on its filtration ability and on the rate of this flow.
A closed elastic liquid flow was considered.

The initial equation has the form [1]
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where ∆P1 = Ps − P1 and ∆P2 = Ps − P2.
The initial and boundary conditions (Fig. 1) are as follows:

∆P1 = 0 ,   ∆P2 = 0   at   t = 0 ; (2)
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Integrating (1), we obtain
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Solving Eqs. (4) and (5) with allowance for the boundary conditions (3), we find the transcendental equation [4–6]
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from which the roots xν are determined. Then Eq. (5) takes the form

P2 (r, t) = Ps − 
∆Pst

ln 
Rw

R2

 ln 
r

R2

 − π 



ln 

R2

Rw




 
∆Pst

ln 
Rw

R2

  ∑ 

ν=1

∞

 

J0 



xν 

R2

Rw




 J0 (xν)

J0
2
 



xν 

R2
Rw




 − J0

2
 (xν)

 Uν 



xν 

r

Rw




 exp 




− xν

2
 
χ2t

Rw
2




 , (7)

where

Uν 



xν 

r

Rw




 = J0 




xν 

r

Rw




 Y0 




xν 

R1

Rw




 − J0 




xν 

R1

Rw




 Y0 




xν 

r

Rw




 ,

and meets condition (2), where ∆Pst = Ps − Pf.
The rate of liquid flow is determined by the following equality:
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solving which, with allowance for (7), we obtain
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Fig. 1. Horizontal section of a seam.
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Figures 2 and 3 present the results of numerical calculations performed by formulas (7) and (9) at the follow-
ing values of the parameters: Ps = 50 MPa, Pf = 10 MPa, ∆Pst = 40 MPa, Rw = 0.085 m, R1 = [10, 100] m, R2 =
[50, 5000] m, χ1 = 0.3 and 6 m2/sec, χ2 = 0.17 and 0.66 m2/sec, k1 = 0.1⋅10−12 and 1.8⋅10−12 m2, k2 = 0.05⋅10−12

and 0.2⋅10−12 m2, µ = 1 cP, h = 10 m, and ξ = [1, 1000].
As is seen from Fig. 2a and b, with decrease in the permeability of a medium in which a liquid flow is fil-

trated, the rate of this flow decreases by almost two times and, at k1 = 1.8⋅10−12 m2 and k2 = 0.2⋅10−12 m2 (Fig. 2c
and d), by almost ten times as compared to that of the reverse flow, which correlates with the experimental data (see
Table 1).

Fig. 2. Change in the rate of liquid flow in inhomogeneous porous media with
time: a, c) filtration in a medium with decreasing permeability; b, d) filtration
in a medium with increasing permeability; a) k1 = 0.1⋅10−12 m2, k2 = 0.05⋅
10−12 m2; b) k1 = 0.05⋅10−12 m2, k2 = 0.1⋅10−12 m2; c) k1 = 1.8⋅10−12 m2,
k2 = 0.2⋅10−12 m2; d) k1 = 0.2⋅10−12 m2, k2 = 1.8⋅10−12 m2 [R2

 ⁄ R1 = 5 (1),
10 (2), and 100 (3)]. Q, 10−3 m3/sec; t, sec.

Fig. 3. Dependence of the pressure P2 on the coordinate ξ: R2
 ⁄ R1 = 5 (1), 10

(2), and 100 (3). P2, MPa.

TABLE 1. Data for Drowned Wells of the "Oil Stones" Deposit Operating in the Pumping Regime

Conditional
numbers of wells Qp⋅105, m3/sec Qpr⋅105, m3/sec

Kr = (Qp ⁄ ∆P)⋅104,
m3/(sec⋅MPa)

Kprod = (Qpr ⁄ ∆P)⋅104,
m3/(sec⋅MPa)

Kr/Kprod

1 98.95 1.11 2.41 0.55 4.38

2 110.18 2.68 2.68 1.34 2.00

3 141.43 3.15 3.36 1.57 2.14

4 161.92 0.47 3.68 0.24 15.33

5 155.67 1.75 3.54 0.87 4.06
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It follows from Fig. 3 that the pressure field in the second zone depends substantially on the ratio R2
 ⁄ R1, and

the loss in the pressure increases with increase in this ratio.

NOTATION

Aν, Bν, D1, D2, integration constants; h, thickness of the seam, m; J, modified Bessel function of the zero
order; Kprod, coefficient of productivity, m3/(sec⋅MPa); Kr, coefficient of responsiveness (m3/sec⋅MPa); k1 and k2, per-
meability of the porous medium in the first and second zones of the seam, m2; P1 and P2, pressure in the first and
second zones of the seam, MPa; ∆P1 and ∆P2, pressure drop in the first and second zones of the seam, MPa; Pf, pres-
sure in the face of the well, MPa; Ps, pressure in the supply loop, MPa; ∆Pst, differential pressure between the supply
loop and the face of the well, MPa; Q, rate of liquid flow, m3/sec; Qpr, rate of produced liquid flow, m3/sec; Qp, rate
of pumped-liquid flow, m3/sec; Qw, rate of liquid flow through the wall of the well, m3/sec; r, coordinate; R1 and
R2; radius of the first and second zones of the seam, m; Rw, radius of the well, m; t, time; sec; Uν, function, ν = 1,
2, 3, ...; xν, root of the transcendental equation; Y0, modified Bessel function of the zero order; χ1 and χ2, coefficients
of piezoconduction in the first and second zones of the seam, m2/sec; µ, dynamic viscosity of liquid, cP; ξ = r ⁄ Rw,
coordinate. Subscripts: pr, produced; f, face; p, pumped; s, supply; prod, productivity; r, responsiveness; w, well; st,
stationary; 0, zero order; 1 and 2, first and second zones of the seam.
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